Page 83 - Demo
P. 83
83 septiembre-diciembre 2024 Frontera Biotecnol%u00f3gica | N%u00b0 29Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z (2021). Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Waste Management, 119,374%u2013388. https://doi.org/10.1016/j.wasman.2020.10.008Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Bhatia SK, Jeon JM, Yoon JJ, Yoo J, Ahn J, Park JH, Yang YH. (2023). Polyhydroxybutyrate production from crude glycerol using a highly robust bacterial strain Halomonas sp. YLGW01. International Journal of Biological Macromolecules, 236,123997. https://doi.org/10.1016/j.ijbiomac.2023.123997Kim J, Gupta NS, Bezek LB, Linn J, Bejagam KK, Banerjee S, Dumont JH, Nam SY, Kang HW, Park CH, Pilania G, Iverson CN, Marrone BL, Lee KS (2023). Biodegradation Studies of Polyhydroxybutyrate and Polyhydroxybutyrate-coPolyhydroxyvalerate Films in Soil. International Journal of Molecular Sciences, 24(8), 7638. https://doi.org/10.3390/ijms24087638Kola Pratap J, Krishnan K (2023). Microbial Production of Polyhydroxyalkonates (Bioplastic) using Cheap Household Waste Resources and Their Biomedical Applications: A Systematic Review. Letters in Applied NanoBioScience, 12(4), 1%u201314.Kurian NS, Das B (2021). Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review. International Journal of Biological Macromolecules, 183,1881%u20131890. https://doi.org/10.1016/j.ijbiomac.2021.06.007Mandaokar A (2024) Polyhydroxyalkanoate Market Research Report Information by Type (Polyhydroxybutyrate and Polyhydroxyvalerate), by Application (Biomedical, Packaging, Drug Delivery Carriers, Biofuels and others), by Technology (Genetically Engineered Plants and Genetically Engineered Bacteria) [online]. Market research future. Available from: https://www.marketresearchfuture.com/reports/polyhydroxyalkanoatemarket-4621?utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=2893753364&hsa_cam=20269362920&hsa_grp=148912616334&hsa_ad=661977011274&hsa_src=g&hsa_tgt=dsa-2089395924464&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1Mehmood A, Raina N, Phakeenuya V, Wonganu B, Cheenkachorn, K (2023). The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Materials Today: Proceedings, 72,3049%u20133055. https://doi.org/10.1016/j.matpr.2022.08.387Melchor-Mart%u00ednez EM, Mac%u00edasGarbett R, Alvarado-Ram%u00edrez L, Ara%u00fajo RG, Sosa-Hern%u00e1ndez JE, Ram%u00edrez-Gamboa D, Parra-Arroyo L, Alvarez AG, Monteverde RPB, Cazares KAS, Reyes-Mayer A, Y%u00e1%u00f1ez Lino M, Iqbal HMN, Parra-Sald%u00edvar R (2022). Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics. Polymers, 14(6), 1203. https://doi.org/10.3390/polym14061203Montero V, Chinchilla Y, G%u00f3mez L, Flores A, Medaglia A, Guill%u00e9n R, Montero E (2023). Human health risk assessment for consumption of microplastics and plasticizing substances through marine species. Environmental Research, 237,116843. https://doi.org/10.1016/j.envres.2023.116843Mostafa YS, Alrumman SA, Otaif KA, Alamri SA, Mostafa MS, Sahlabji T (2020). Production and Characterization of Bioplastic by Polyhydroxybutyrate Accumulating Erythrobacter aquimaris Isolated from Mangrove Rhizosphere. Molecules, 25(1), 179. https://doi.org/10.3390/molecules25010179Nguyen LH, Nguyen BS, Le DT, Alomar TS, AlMasoud N, Ghotekar S, Oza R, Raizada P, Singh P, Nguyen VH (2023). A concept for the biotechnological minimizing of emerging plastics, micro- and nano-plastics pollutants from the environment: A review. Environmental Research, 216, 114342. https://doi.org/10.1016/j.envres.2022.114342Numata K, Abe H, Doi Y (2008). Enzymatic processes for biodegradation of poly(hydroxyalkanoate)s crystals. Canadian Journal of Chemistry, 86(6), 471%u2013483. https://doi.org/10.1139/v08-004Parashar N, Hait S (2021). Plastics in the time of COVID-19 pandemic: Protector or polluter? Science of The Total Environment, 759,144274. https://doi.org/10.1016/j.scitotenv.2020.144274Priya AK, Jalil AA, Dutta K, Rajendran S, Vasseghian Y, Qin J, SotoMoscoso M (2022). Microplastics in the environment: Recent developments in characteristic, occurrence, identification and ecological risk. Chemosphere, 298,134161. https://doi.org/10.1016/j.chemosphere.2022.134161Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of The Total Environment, 645,1048%u20131056. https://doi.org/10.1016/j.scitotenv.2018.07.229Raza ZA, Riaz S, Banat IM (2018). Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnology Progress, 34(1), 29%u201341. https://doi.org/10.1002/btpr.2565Ren SY, Ni HG (2023). Biodeterioration of Microplastics by Bacteria Isolated from Mangrove Sediment. Toxics, 11(5), 432. https://doi.org/10.3390/toxics11050432Rodprasert W, Toppari J, Virtanen HE (2021). Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.706532Ronkay F, Molnar B, Gere D, Czigany T (2021). Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Management, 119, 101%u2013110. https://doi.org/10.1016/j.wasman.2020.09.029Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D, Somarelli JA, Virdin J, Dunphy-Daly MM (2020). Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environment International, 144, 106067. https://doi.org/10.1016/j.envint.2020.106067Shah S, Kumar A (2021). Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates. Brazilian Journal of Microbiology, 52(2), 715%u2013726. https://doi.org/10.1007/s42770-021-00452-zShahhosseini S (2004). Simulation and optimisation of PHB production in fed-batch culture of Ralstonia eutropha. Process Biochemistry, 39(8), 963%u2013969. https://doi.org/10.1016/S0032-9592(03)00209-7Sun Z, Ramsay JA, Guay M, Ramsay BA (2007). Fermentation process development for the production of medium-chain-length poly3-hyroxyalkanoates. Applied Microbiology and Biotechnology, 75(3), 475%u2013485. https://doi.org/10.1007/s00253-007-0857-4Trakunjae C, Boondaeng A, Apiwatanapiwat W, Janchai P, Neoh SZ, Sudesh K, Vaithanomsat P (2023). Statistical optimization of P(3HB-co3HHx) copolymers production by Cupriavidus necator PHB%u22124/pBBR_CnPro-phaCRp and its properties characterization. Scientific Reports, 13(1), 9005. https://doi.org/10.1038/s41598-023-36180-7Umesh M, Sankar SA, Thazeem B (2021). Fruit Waste as Sustainable Resources for Polyhydroxyalkanoate (PHA) Production. In Bioplastics for Sustainable Development (pp. 205%u2013229). Springer Singapore. https://doi.org/10.1007/978-981-16-1823-9_7Vicente D, Proen%u00e7a DN, Morais PV (2023). The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. International Journal of Environmental Research and Public Health, 20(4), 2959. https://doi.org/10.3390/ijerph20042959Walker TR, Fequet L (2023). Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAC Trends in Analytical Chemistry, 160, 116984. https://doi.org/10.1016/j.trac.2023.116984Wang Q, Zhang C, Li R (2023). Plastic pollution induced by the COVID-19: Environmental challenges and outlook. Environmental Science and Pollution Research, 30(14), 40405%u201340426. https://doi.org/10.1007/s11356-022-24901-wWebb HK, Arnott J, Crawford J, Ivanova EP (2013). Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers. 2013; 5(1):1-18. https://doi.org/10.3390/polym5010001AS ISSN: 2448-8461