Page 47 - Demo
P. 47


                                    ISSN: 2448-8461Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J.-S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332-344.D%u0119bowski, M., Zieli%u0144ski, M., Kazimierowicz, J., Kujawska, N., & Talbierz, S. (2020). Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development%u2014Advantages and Limitations. Sustainability, 12(23), Article 23.Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N., & Sukhikh, S. (2020). Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules, 10(8), Article 8.Garc%u00eda, J. L., de Vicente, M., & Gal%u00e1n, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10(5), 1017-1024.Garc%u00eda-Gozalbes, C. C., Arbib, Z., & Perales-Vargas-Machuca, J. A. (2015). Cin%u00e9ticas de crecimiento y consumo de nutrientes de microalgas en aguas residuales urbanas con diferentes niveles de tratamiento. Tecnolog%u00eda y ciencias del agua, 6(1), 49-68.Hern%u00e1ndez-P%u00e9rez, A., & Labb%u00e9, J. I. (2014). Microalgas, cultivo y beneficios. Revista de biolog%u00eda marina y oceanograf%u00eda, 49(2), 157-173.Aci%u00e9n Fern%u00e1ndez, F. G., Fern%u00e1ndez Sevilla, J. M., & Molina Grima, E. (2019). Chapter 21%u2014Costs analysis of microalgae production. A. Pandey, J.-S. Chang, C. R. Soccol, D.-J. Lee, & Y. Chisti (Eds.), Biofuels from Algae (Second Edition) (pp. 551-566). Elsevier.Akca, M. S., Kinaci, O. K., & Inanc, B. (2024). Improving light availability and creating high-frequency light%u2013dark cycles in raceway ponds through vortexinduced vibrations for microalgae cultivation: A fluid dynamic study. Bioprocess and Biosystems Engineering, 47(11), 1863-1874. https://doi.org/10.1007/s00449-024-03074-5Ara%u00fajo, R., V%u00e1zquez Calder%u00f3n, F., S%u00e1nchez L%u00f3pez, J., Azevedo, I. C., Bruhn, A., Fluch, S., Garcia Tasende, M., Ghaderiardakani, F., Ilmj%u00e4rv, T., Laurans, M., Mac Monagail, M., Mangini, S., Peteiro, C., Rebours, C., Stefansson, T., & Ullmann, J. (2021). Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Frontiers in Marine Science, 7. Bo%u0161njakovi%u0107, M., and Sinaga, N. (2020). The Perspective of Large-Scale Production of Algae Biodiesel. Applied Sciences, 10(22), Article 22.Castillo, O. S., Torres-Badajoz, S. G., N%u00fa%u00f1ez-Col%u00edn, C. A., Pe%u00f1aCaballero, V., Herrera M%u00e9ndez, C. H., Rodr%u00edguez-N%u00fa%u00f1ez, J. R., 2017). Producci%u00f3n de biodi%u00e9sel a partir de microalgas: Avances y perspectivas biotecnol%u00f3gicas. Hidrobiol%u00f3gica, 27(3), 337-352.Chen, H., Zheng, Y., Zhan, J., He, C., & Wang, Q. (2017). Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnology for Biofuels, 10(1), 153.Jones, P. J. H., & Rideout, T. (2014). Lipids, sterols, and their metabolites. In A. C. Ross, B. Caballero, R. J. Cousins, K. L. Tucker, & T. R. Ziegler (Eds.), Modern nutrition in health and disease (11th ed.). Baltimore, MD: Lippincott Williams & WilkinsKhoo, K. S., Ahmad, I., Chew, K. W., Iwamoto, K., Bhatnagar, A., & Show, P. L. (2023). Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 96, 101071.Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52-63. Kumar, R., Hegde, A. S., Sharma, K., Parmar, P., & Srivatsan, V. (2022). Microalgae as a sustainable source of edible proteins and bioactive peptides %u2013 Current trends and future prospects. Food Research International, 157, 111338.Maeda, H., Fukuda, S., Izumi, H., & Saga, N. (2018). Anti-Oxidant and Fucoxanthin Contents of Brown Alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Marine Drugs, 16(8), Article 8.Mata, T. M., Martins, A. A., & Caetano, Nidia. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., & Musmarra, D. (2018). Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), Article 11.Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422-443. Pandey, S., Narayanan, I., Vinayagam, R., Selvaraj, R., Varadavenkatesan, T., & Pugazhendhi, A. (2023). A review on the effect of blue green 11 medium and its constituents on microalgal growth and lipid production. Journal of Environmental Chemical Engineering, 11(3), 109984.Patel, A. K., Tambat, V. S., Chen, C.-W., Chauhan, A. S., Kumar, P., Vadrale, A. P., Huang, C.-Y., Dong, C.-D., & Singhania, R. R. (2022). Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 364, 128030. Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Sim%u00f5es, M. (2012). Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5), 3043-3053. https://doi.org/10.1016/j.rser.2012.02.055Rastogi, R. P., Madamwar, D., & Pandey, A. (2017). Algal Green Chemistry: Recent Progress in Biotechnology. Elsevier.Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7. Taufiqurrahmi, N., Religia, P., Mulyani, G., Suryana, D., Ichsan, Tanjung, F. A., & Arifin, Y. (2017). Phycocyanin extraction in Spirulina produced using agricultural waste. IOP Conference Series: Materials Science and Engineering, 206(1), 012097.Tejeda-Ben%u00edtez, L., HenaoArgumedo, D., Alvear-Alay%u00f3n, M., & Castillo-Saldarriaga, C. R. (2015). Caracterizaci%u00f3n y perfil lip%u00eddico de aceites de microalgas. Revista Facultad de Ingenier%u00eda, 24(39), 43-54.Thevarajah, B., Nishshanka, G. K. S. H., Premaratne, M., Nimarshana, P. H. V., Nagarajan, D., Chang, J.-S., & Ariyadasa, T. U. (2022). Producci%u00f3n a gran escala de prote%u00ednas basadas en espirulina y c-ficocianina: Un enfoque de biorrefiner%u00eda. Biochemical Engineering Journal, 185, 108541. Zhang, Z.-Q., Cao, W.-T., Liu, J., Cao, Y., Su, Y.-X., & Chen, Y.-M. (2016). Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporosis International, 27(4), 1593-1601. REFERENCIAS47enero - abril 2025 Frontera Biotecnol%u00f3gica | N%u00b0 30
                                
   41   42   43   44   45   46   47   48   49   50   51