Page 13 - Demo
P. 13
Contreras-Cornejo, H. A., Mac%u00edas-Rodr%u00edguez, L., Beltr%u00e1nPe%u00f1a, E., Herrera-Estrella, A., & L%u00f3pez-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal- and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signaling and Behavior, 6(10), 1554%u20131563. https://doi.org/10.4161/psb.6.10.17443Daguerre, Y., Siegel, K., Edel-Hermann, V., & Steinberg, C. (2014). Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: A review. In Fungal Biology Reviews (Vol. 28, Issue 4, pp. 97%u2013125). Elsevier Ltd. https://doi.org/10.1016/j.fbr.2014.11.001Doni, F., Isahak, A., Che Mohd Zain, C. R., & Wan Yusoff, W. M. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, 4(1), 1%u20137. https://doi.org/10.1186/s13568-014-0045-8Gajera, H. P., & Domadiya, R. (2013). Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system-a review. https://www.researchgate.net/publication/267571641Ghorbanpour, A., Salimi, A., Ghanbary, M. A. T., Pirdashti, H., & Dehestani, A. (2018). The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Scientia Horticulturae, 230, 134%u2013141. https://doi.org/10.1016/j.scienta.2017.11.028Gonz%u00e1lez-l%u00f3pez, M. D. C., Jij%u00f3n-moreno, S., Dautt-castro, M., Ovando-v%u00e1zquez, C., Ziv, T., Horwitz, B. A., & Casasflores, S. (2021). Secretome analysis of arabidopsis%u2013trichoderma atroviride interaction unveils new roles for the plant glutamate: Glyoxylate aminotransferase ggat1 in plant growth induced by the fungus and resistance against botrytis cinerea. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22136804Hermosa, R., Cardoza, R. E., Rubio, M. B., Guti%u00e9rrez, S., & Monte, E. (2014). Secondary Metabolism and Antimicrobial Metabolites of Trichoderma. In Biotechnology and Biology of Trichoderma (pp. 125%u2013137). Elsevier B.V. https://doi.org/10.1016/B978-0-444-59576-8.00010-2Jaklitsch, W. M. (2009). European species of Hypocrea Part I. The green-spored species. Studies in Mycology, 63, 1%u201391. https://doi.org/10.3114/sim.2009.63.01Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: From %u2019omics to the field. Annual Review of Phytopathology, 48, 395%u2013417. https://doi.org/10.1146/annurev-phyto-073009-114314Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158(2), 844%u2013853. https://doi.org/10.1104/pp.111.187468Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A., & Mukherjee, P. K. (2018). Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. In Fungal Biology Reviews (Vol. 32, Issue 2, pp. 62%u201385). Elsevier Ltd. https://doi.org/10.1016/j.fbr.2017.12.001Mor%u00e1n-Diez, M. E., Mart%u00ednez de Alba, %u00c1. E., Rubio, M. B., Hermosa, R., & Monte, E. (2021). Trichoderma and the plant heritable priming responses. In Journal of Fungi (Vol. 7, Issue 4). MDPI AG. https://doi.org/10.3390/jof7040318Navi, S. S., & Yang, X. B. (2020). Use of Trichoderma in the Management of Diseases in North American Row Crops (pp. 187%u2013204). https://doi.org/10.1007/978-981-15-3321-1_10Pavet, V., Quintero, C., Cecchini, N. M., Rosa, A. L., & Alvarez, M. E. (2006). Arabidopsis Displays Centromeric DNA Hypomethylation and Cytological Alterations of Heterochromatin Upon Attack by Pseudomonas syringae. / 577 MPMI, 19(6), 577%u2013587. https://doi.org/10.1094/MPMIPieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347%u2013375. https://doi.org/10.1146/annurev-phyto-082712-102340Poveda, J., Hermosa, R., Monte, E., & Nicol%u00e1s, C. (2019). Trichoderma harzianum favor%u2019s the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48269-zRam%u00edrez-Valdespino, C. A., Casas-Flores, S., & OlmedoMonfil, V. (2019). Trichoderma as a model to study effectorlike molecules. In Frontiers in Microbiology (Vol. 10, Issue MAY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.01030S%u00e1nchez-Montesinos, B., Di%u00e1nez, F., Moreno-Gav%u00edra, A., Gea, F. J., & Santos, M. (2020). Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy, 10(7). https://doi.org/10.3390/agronomy10071004Subramaniam, S., Zainudin, N. A. I. M., Aris, A., & Hasan, Z. A. E. (2022). Role of Trichoderma in Plant Growth Promotion. In Advances in Trichoderma Biology for Agricultural Applications (pp. 257%u2013280). https://doi.org/10.1007/978-3-030-91650-3_9Frontera Biotecnol%u00f3gica septiembre - diciembre 202312ISSN: 2448-8461