Page 25 - Demo
P. 25
25 septiembre-diciembre 2024 Frontera Biotecnol%u00f3gica | N%u00b0 29ISSN: 2448-8461Hern%u00e1ndez-Guti%u00e9rrez B, Cruz-L%u00f3pez MC, G%u00f3mez-Garc%u00eda O, BecerraMart%u00ednez E, Jim%u00e9nez-Montejo FE, Mendieta-Moctezuma A (2024) Alpha-glucosidase and Alphaamylase inhibitors derived from naturally occurring prenylated isoflavones. J. Mex. Chem. Soc. 68:156-169. https://doi.org/10.29356/jmcs.v68i1.2129 L%u00f3pez-Camacho PY, Guzm%u00e1nHern%u00e1ndez RN, Hern%u00e1ndez GVH, Diaz MJE, Garc%u00eda-Sierra F, BasurtoIslas G (2017) Investigaci%u00f3n y terapias en la enfermedad de Alzheimer basadas en beta amiloide y tau. Arch. Neurocien. 22:72-88.Karmakar A, Ambure P, Mallick T, Das S, Roy K, Begum NA (2019) Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure%u2013activity relationship. Med. Chem. Res. 28:723-741.Khan H, Mayra, Amin S, Kamal MA, Patel S (2018) Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 101:860-870. https://doi.org/10.1016/j.biopha.2018.03.007 Maramai S, Benchekroun M, Gabr TM, Yahiaoui S (2020) Multitarget therapeutic strategies for Alzheimer%u2019s disease: Review on emerging target combinations. BioMed Res. Int. 2020:5120230. https://doi.org/10.1155/2020/5120230 Ribaudo G, Coghi P, Zanforlin E, Law BYK, Wu YYJ, Han Y, Qiu AC, Qu YQ, Wong VKW (2019) Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimer%u2019s disease. Bioorg. Chem. 87:474-483. https://doi.org/10.1016/j.bioorg.2019.03.034 Singh L, Kaur H, Chandra AG, Bhatti R (2023) Neuroprotective potential of formononetin, a naturally occurring isoflavone phytoestrogen. Chem. Biol. Drug Des. 103:e14353. https://doi.org/10.1111/cbdd.14353 Barreca M, Span%u00f2 V, Montalbano A, Cueto M, D%u00edaz MAR, Deniz I, Erdo%u011fan A, Luki%u0107 BL, Moulin C, Taffin-de-Givenchy E, Spriano F, Perale G, Mehiri M, Rotter A, Thomas PO, Barraja P, Gaud%u00eancio PS, Bertoni F (2020) Marine anticancer drugs agents: An overview with a particular focus on their chemical classes. Mar. Drugs. 18:619. https://doi.org/10.3390/md18120619 Ch%u00e1vez-P%u00e9rez C, Ceballos-Ram%u00edrez A, Su%u00e1rez-Castro A (2021) Efectos del uso del 17 %u03b2-estradiol y la geniste%u00edna en la enfermedad de Alzheimer en mujeres con menopausia. Rev. Esp. Geriatr. Gerontol. 56:236-240. https://doi.org/10.1016/j.regg.2021.04.005 Das K, Gezici S (2018) Secondary plant metabolites, their separation and identification, and role in human disease prevention. Ann. Phytomed. 7:13-24. https://doi.org/10.21276/ap.2018.7.2.3 Dos Santos TC, Gomes TM, Pinto B. AS, Camara AL, Paes AMDA (2018) Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Front. Pharmacol. 9:1192. https://doi.org/10.3389/fphar.2018.01192 Ellman GL, Courtney KD, Andres JrV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88-95. https://doi.org/10.1016/0006/2952(61)90145-9 Enamorados-Rodr%u00edguez Y, Ilyina A, Silva-Belmares Y, Vargas-Segura AI, Mart%u00ednez-Hern%u00e1ndez JL, Segura CEP (2017) Uso de plantas mexicanas con efecto inhibitorio sobre la enzima acetilcolinesterasa como un posible tratamiento para la enfermedad de Alzheimer. Rev. Mex. Cienc. Farm. 48:7-16.Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, Pusparajah P, Lee LH, Goh BH (2019) Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol. 10:820. https://doi.org/10.3389/fphar.2019.00820 Tian J, Wang X-Q, Tian Z (2022) Focusing on formononetin: Recent perspective for its neuroprotective potentials. Front. Pharmacol. 13:905898. https://doi.org/10.3389/fphar.2022.905898 Velu G, Palanichamy V, Rajan AP (2018) Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganic phase in natural food: An overview, 135-156. Springer, Cham. https://doi.org/10.1007/978-3-319-74210-6_8 Venzke D, Carvalho FK, Ruani AP, Oliveira AS, Brighente IMC, Micke GA, Barison A, Pizzolatti MG (2013) PAMPA permeability, acetylcholinesterase inhibition and antioxidant activity of pyranoisoflavones from Polygala molluginifolia (Polygalaceae). J. Braz. Chem. Soc. 24:1991-1997. https://doi.org/10.5935/0103-5053.20130249 Wang D, Hu M, Li X, Zhang D, Chen C, Fu J, Shao S, Shi G, Zhou Y, Wu S, Zhang T (2019) Design, synthesis, and evaluation of isoflavones analogs as multifunctional agents for the treatment of Alzheimer%u00b4s disease. Eur. J. Med. Chem. 168:207-220. https://doi.org/10.1016/j.ejmech.2019.02.053 Wu C, Tu Y-b, Li Z, Li Y-f (2019) Highly selective carbamate-based butyrylcholinesterase inhibitors from a naturally occurring pyranoisoflavone. Bioorg. Chem. 88:102949. https://doi.org/10.1016/j.bioorg.2019.102949REFERENCIAS